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INTRODUCTION

The most demanding requirement for future FELs in the
x-ray regime [2, 3] is the generation of a sufficiently small
transverse electron emittance. To mitigate this problem,
ideas have been proposed to ‘condition’ an electron beam
by increasing each particle’s energy in proportion to the
square of its betatron amplitude [1, 4]. This conditioning
enhances FEL gain by reducing the axial velocity spread
within the electron bunch. We present a new conditioning
scheme using solenoid magnets, which looks promising.
But a strong head-tail focusing variation arises, as in [1].
We quantify the resulting ‘projected’ (bunch-length inte-
grated) emittance growth, relating it directly to the FEL pa-
rameters. We then present a general symplectic beam con-
ditioner and show the unavoidable relation between condi-
tioning and projected transverse emittance growth.

FEL BEAM CONDITIONING

Electron beam conditioning, as proposed in [1], in-
creases each particle’s energy in proportion to the square of
its betatron amplitude. A particle with high energy travels
a shorter path in an undulator (increased mean axial veloc-
ity), while a large betatron amplitude delays a particle by
lengthening its path through the undulator [5]. The condi-
tioning correlation establishes a cancellation of these two
effects, resulting in a reduction of the axial velocity spread,
enhancing the FEL gain. The energy conditioning require-
ment, for natural undulator focusing, can be written as [1]

δu = δn +
1

4γu

εN

βu

λu

λr
r2 , (1)

where δn(� δu) is the non-conditioned component of the
particle’s relative energy deviation, γu is the electron en-
ergy in the undulator (in units of rest mass), εN (= γuε) is
the normalized rms transverse emittance (equal in x and y),
βu(= βx = βy) is the constant beta-function in the undu-
lator, λu is the undulator period, λr is the FEL radiation
wavelength, and r is the invariant normalized 4D betatron
amplitude of the particle,

r2 ≡ x2 + (βux′)2 + y2 + (βuy′)2

βuε
. (2)

The betatron amplitude, r, is expressed in terms of a par-
ticle’s transverse positions, x and y, and angles, x′ and y′,
with natural focusing where αx = αy = 0. A conditioner
beamline is designed to imprint this δu ∼ r2 correlation
within the electron bunch, with coefficient given in Eq. (1).

In a general case, the conditioning might be performed
at low energy where the bunch is still relatively long. For
short wavelength FELs, the bunch is compressed and ac-
celerated after the injector. Both effects scale the condi-
tioning, but in the absence of mixing, do not alter its corre-
lation. Acceleration from γ0 to γu (‘energy’ in undulator)
reduces the conditioned relative energy spread, while com-
pression from an initial bunch-length, σz0 , to a shorter final
bunch-length, σzf

, amplifies the conditioning. The relative
energy deviation, δ, at the location of the conditioner, be-
fore acceleration and compression, must then be scaled by
the acceleration and compression factors:

δ =
σzf
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r2

)
. (3)

A ONE-PHASE SOLENOID
CONDITIONER

As an example conditioner, and to show the limitations
of conditioners, we describe here a simplified system com-
posed of a solenoid magnet and RF accelerating sections.
The conditioner is composed of a solenoid magnet sand-
wiched between two RF accelerating sections operated at
opposing zero-crossing phases. (A similar idea was pro-
posed at the end of reference [4].) The first RF section
‘chirps’ the energy along the bunch, and the final sec-
tion removes the chirp. The conditioning is generated in
the solenoid by the delay of particles with large ampli-
tudes in x and y. The solenoid strength is set to pro-
duce a +I linear transfer matrix in 6D with the relation
|k|L = nπ (n = 1, 2, 3, ...), where k ≡ 1

2Bz/(Bρ), L
is the solenoid length, Bz is its axial magnetic field, and
(Bρ) is the standard magnetic rigidity (= p0/e). The parti-
cle coordinates within the bunch at the entrance to the sys-
tem are (x0, x

′
0, y0, y

′
0, z0, δ0), where δ0 ≡ ∆p/p0, and we

assume these variables are initially uncorrelated and have
zero mean. For simplicity, we use a cylindrically symmet-
ric beam with initial Twiss parameters: βx = βy = β,
and αx = αy = 0. The Twiss parameters are unchanged,
to 1st-order, across the solenoid and across each ‘thin’ RF
section. The electrons are assumed to be ultra-relativistic.

The first RF section changes the relative energy devia-
tion of a particle to: δ1 = δ0 + h1z0, where h1 is the
linear RF-induced slope (h ≡ dδ/dz). For simplicity,
the RF sections are treated as thin elements which do not
alter the transverse coordinates. After the solenoid, the
coordinates are unchanged to 1st-order, but a chromatic
2nd-order aberration is added to the angles with ∆x′ =



2T216x0(δ0 + h1z0) and ∆y′ = 2T436y0(δ0 + h1z0). All
other 2nd-order transverse aberrations are small in com-
parison for the case: |k|β � 1, |k|L = nπ [6].

The energy is not changed in the solenoid, but the par-
ticle is delayed by the helical trajectory according to z1 =
z0 +T511x

2
0 +T533y

2
0 (bunch head at z > 0). Similarly, all

other 2nd-order longitudinal aberrations are small for the
case |k|β � 1. The 2nd-order coefficients of a solenoid
with |k|L = nπ are related to each other by: T511 =
T533 = −T216 = −T436 = −k2L/2 [6], which, as shown
in section , is an unavoidable connection for symplectic
systems. The final RF section, h2, changes the energy ac-
cording to δ = δ1+h2z1 ≈ (h1+h2)z0− 1

2k2Lh2(x2
0+y2

0).
The second chirp is chosen equal and opposite to the first,
h1 = −h2 ≡ h, and the final coordinate map across the
conditioner, to second order and for |δ0| � |hz0|, becomes

x = x0 , x′ = x′
0 + k2Lhz0x0 ,

z = z0 − 1
2
k2L(x2

0 + y2
0) ,

δ = δ0 +
1
2
k2Lh(x2

0 + y2
0) , (4)

with similar relations in y and y′. The final energy devi-
ation, δ, is clearly conditioned (for h > 0) in both planes
but in only one betatron phase (i.e., x0, but not x′

0). This
system provides spatial (but not angular) conditioning de-
scribed by

δ = δ0 +
1
2
k2Lhβε0r

2 , r2 ≡ x2
0 + y2

0

βε0
. (5)

Two solenoids can also be used, separated by a π/2-
transformer to condition both betatron phases, but here we
simplify the description by considering only a one-phase
conditioner.

The bunch-length coordinate, z, in Eqs. (4) also includes
a non-linear distortion due to the solenoid delay of large
amplitude particles. This can easily be removed, without
changing the energy conditioning, by adding a four-dipole
chicane with R56 = 1/h > 0, after the final RF section.

ENERGY CONDITIONING AND
TRANSVERSE EMITTANCE GROWTH

The conditioning coefficient in Eq. (3) can be equated to
that in Eq. (5) producing the conditioning requirement for
the solenoid system

k2Lhβσz0 =
1
2

λu

λr

σzf

βu
≡ a , (6)

where the solenoid-conditioner parameters are on the left
side and the FEL parameters are on the right, and here we
define the dimensionless conditioning coefficient, a. In the
typical case of a short wavelength FEL, the conditioning
parameter a is large, a � 1, (see table below).

The chirp parameter, h, is related it to the rms relative
energy spread in the solenoids by: σδ1 ≈ |h|σz0 , showing

Table 1: FEL parameters for LCLS [2] and VISA [7].
parameter sym LCLS VISA unit
und. energy/mc2 γu 28000 140
undulator period λu 3 1.8 cm
rad. wavelength λr 1.5 8500 Å
und. βx,y βu 72 0.6 m
und. bunch length σzf

24 100 µm
conditioning coef a 33 1.8

the transverse aberrations in Eqs. (4) as chromatic (δ1 ≈
hz0), which we now quantify as an projected transverse
emittance growth. The rms emittance after the solenoid is

ε2x = 〈(x − x)2〉〈(x′ − x′)2〉 − 〈(x − x)(x′ − x′)〉2 . (7)

The mean values, x = 〈x〉, and x′ = 〈x′〉 are zero since
the initial coordinates are uncorrelated and have zero mean.
The correlation 〈xx′〉 is zero for the same reasons, so the
x-emittance after the solenoid is:

ε2x = 〈x2〉〈x′2〉 ≈ ε2x0[1 + (k2Lhβσz0)
2] , (8)

where εx0 = 〈x2
0〉/β = 〈x′2

0 〉β, and σ2
z0

= 〈z2
0〉, with a

similar form in y. The relative emittance growth after the
solenoid is

εx

εx0
≈ k2Lhβσz0 = a � 1 , (9)

which is identical to the conditioning relation in Eq. (6),
providing a direct connection between transverse emittance
growth and FEL conditioning requirements.

For parameters of the LCLS [2] shown in Table 1 (using
a beta function for natural focusing, to be consistent with
Eq. 1), the relative emittance growth is extremely large at
εx/εx0 ≈ 33. The parameters for the VISA FEL [7] are
also included showing that conditioning may still be pos-
sible at longer wavelengths. This growth is actually an
increase of the ‘projected’ transverse emittance integrated
over the bunch length. The second line of Eq. (4) shows
that the bunch head (z0 > 0) is de-focused (equating:
k2Lhz0 = 1/f ), while the bunch tail (z0 < 0) is focused.

With a chirped energy spread, the chromatic effects
of the solenoid are equivalent to the effects of an RF-
quadrupole (RFQ). It is interesting to compare this result
with that of reference [1], where a completely different
conditioner beamline, employing transverse RF cavities,
produced an undesirable RFQ effect. In fact, as shown
in the next section, FEL beam conditioning in a symplec-
tic beamline always produces an undesirable RFQ-effect,
which is extremely large for short wavelength FELs, as
given in Eq. (9).

A GENERAL CONDITIONER

We will now show that the transverse emittance growth
associated with conditioning is not related to the specific
design outlined in the previous section, but is a general
feature of any conditioner, and is due to the symplectic-
ity of the map between the entrance to and exit from the



conditioner. To simplify consideration, we assume that the
conditioner does not introduce coupling between the verti-
cal and horizontal planes, and consider only the horizontal
plane with the initial values of coordinates (x0, x′

0) at the
entrance, and the final values (x, x′) at the exit. Consid-
eration of the vertical coordinates y, y′ can be carried out
analogously to x, x′. We will also assume that the initial
and final values of the longitudinal coordinate are the same:
z = z0. Instead of using the variables x0, x′

0 and x, x′, it
is convenient and more general to introduce new variables
u0, v0, and u, v, such that(

u0

v0

)
= Q0

(
x0

x′
0

)
,

(
u
v

)
= Q

(
x
x′

)
, (10)

where the matrices Q0 and Q are

Q0 =
1√
β0

(
1 0
α0 β0

)
, Q =

1√
β

(
1 0
α β

)
, (11)

with β0, α0 and β, α the Twiss parameters at the entrance
and exit of the conditioner, respectively. Being symplectic
linear transformations, Q and Q0 conserve the symplectic-
ity of the map from (u0, v0) to (u, v). Note, that in linear
approximation this map has a form(

u
v

)
=

(
cos ψ sinψ
− sin ψ cos ψ

)(
u0

v0

)
, (12)

with ψ the betatron phase advance across the condi-
tioner. Also note that the contribution of the x-coordinate
x2

0/(βε0) to the parameter r in Eq. (5) is equal to u2
0/ε0,

and the conditioning requirement Eq. (5) can be written as

δ = δ0 +
1
2
bu2

0 , (13)

where b = a/σz0 , and the conditioning constant a is given
by Eq. (6).

To derive a general symplectic map which in linear ap-
proximation reduces to the linear map Eq. (12) and also
includes the conditioning given by Eq. (13), we will use
a method of generating functions [8]. We choose a gener-
ating function which depends on initial coordinates u0 and
z0 and final momenta v and δ, F (u0, z0, v, δ). The map is
defined by the relations

v0 =
∂F

∂u0
, δ0 =

∂F

∂z0
, u =

∂F

∂v
, z =

∂F

∂δ
. (14)

In paraxial approximation all coordinates and momenta are
considered small and we can expand F in a Taylor se-
ries. The linear terms in this expansion vanish because
zero initial coordinates and momenta map to zero final
ones. The expansion begins from the second order terms
F ≈ F2 + F3 + . . . , where F2 is a quadratic, and F3 is a
cubic function of the coordinates and momenta. The func-
tion F2 should generate the linear map Eq. (12) for u and v
with a unit transformation for z and δ—a direct calculation
shows that

F2 =
1
2
(u2

0 + v2) tan ψ + u0v sec ψ + δz0 . (15)

The function F3 generates 2nd-order abberations in the sys-
tem, out of which we choose only a term responsible for the
conditioning:

F3 = −1
2
bz0u

2
0 . (16)

Indeed, using the second of Eqs. (14) with Eqs. (15) and
(16) we find δ0 = δ − 1

2bu2
0 , in agreement with Eq. (13).

At the same time the first and the third of Eqs. (14) yield
v0 = u0 tan ψ + v sec ψ − bz0u0, u = v tan ψ + u0 sec ψ .
These equations can be easily solved for u and v:

u = u0 cos ψ + v0 sinψ + bz0u0 sin ψ ,

v = −u0 sinψ + v0 cos ψ + bz0u0 cos ψ . (17)

We emphasize here that the same term in the symplectic
map Eq. (16) that is responsible for the conditioning of the
beam also introduces in Eq. (17) the transverse deflection
that varies along the bunch. This also means that adding a
system that ‘fixes’ this deflection downstream of the condi-
tioner would inevitably remove the conditioning itself.

To calculate the emittance increase of the beam due to
the conditioning we use Eq. (7) for the emittance, with ū =
v̄ = 0, we find ε2x = 〈u2〉〈v2〉 − 〈uv〉2. Substituting the
map, Eqs. (17), into this yields

ε2x = ε2x0(1 + b2σ2
z0

) = ε2x0(1 + a2) , (18)

in agreement with Eq. (8), but now in a general case with
arbitrary phase advance, ψ, and non-zero initial alpha func-
tion, α0. For the specific conditioner described above, we
have ψ = 2nπ, β0 = β, α0 = α = 0, and Eqs. (17)
reproduce the first two of Eqs. (4).

CONCLUSIONS

We have demonstrated for a general one-phase condi-
tioner that a strong head-tail focusing variation always ac-
companies the energy conditioning correlation, and that
this focusing variation is set solely by the FEL parame-
ters, and not the conditioner. A two-phase conditioner is
more complicated, but does not qualitatively change the ar-
guments presented here.

This work was supported by the Department of Energy,
contract DE-AC03-76SF00515.

REFERENCES

[1] A. Sessler et al., Phys. Rev. Lett., 68, 309 (1992).

[2] LCLS CDR, SLAC Report No. SLAC-R-593, 2002.

[3] TESLA TDR, DESY Report No. DESY-2001-011, 2001.

[4] N. A. Vinokurov, Nucl. Inst. and Meth. A 375 (1996) 264.

[5] S. Reiche, Nucl. Inst. and Meth. A 445 (2000) 90.

[6] F. C. Iselin, The MAD Program Ver. 8.13, Physical Methods
Manual (1994), p. 29.

[7] A. Tremaine et al., in Proc. of the PAC’01, Chicago, IL
(IEEE, Piscataway, NJ, 2001), p. 2760.

[8] H. Goldstein, Classical Mechanics, (Addison-Wesley, Lon-
don, 1980).


